新加坡狮城论坛

返回列表 发帖 付费广告
楼主: 静雯

[小学] 奥数问题大家讨论

[复制链接]
发表于 17-3-2012 16:02:14|来自:印度 | 显示全部楼层
本帖最后由 davidbin 于 17-3-2012 21:59 编辑

Work backwards:1973->1954->1940->1924->1907->1885->1865->1846->1832->1816 (X)
1971->1953->1935->1917(x)
remove 1973,1971 from the list. I stop here, waiting for smart way!

点评

The smart way is using the Congruences Method (mod 3). You are so smart that I won't say any more. Thank you for your support.  详情 回复 发表于 21-3-2012 09:59
回复 支持 反对

使用道具 举报

发表于 21-3-2012 10:10:41|来自:印度 | 显示全部楼层
小狮租房
第八期

P8.JPG
回复 支持 反对

使用道具 举报

发表于 21-3-2012 11:16:07|来自:印度 | 显示全部楼层
静雯 发表于 14-3-2012 12:17
第七期

受楼主提示,给出以下解法
一个数除以3的余数= 这个数的各位数字之和除以3的余数
比如:mod (16,3) =1; mod ((1+6),3) =1
1,2,4,8,16,23,28,38,...
以上的数列,后一个数=前一个数加上其各位数字之和
mod(后一个数,3 )= mod(前一个数,3)+mod(前一个数各位数字之和,3)= 2mod(前一个数,3)
1,2,4,8,16,23,28,38,...   mod 3

1,2,1,2,1,2,.....

mod(1971,3) =0 X
mod(1974,3) =0 X
mod(1973,3) =2
因为是第151个数,其余数必是1,故1973也不可能,答案是1972

回复 支持 反对

使用道具 举报

发表于 21-3-2012 11:56:08|来自:印度 | 显示全部楼层
静雯 发表于 21-3-2012 10:10
第八期

猜一猜 36

点评

Correct.  详情 回复 发表于 16-4-2012 09:28
回复 支持 反对

使用道具 举报

发表于 16-4-2012 09:33:07|来自:印度 | 显示全部楼层
Problem 9
How many 5-digit multiples of 3 have at least one of its digits equal to 3?

Solution
Method 1:  (provided by frekiwang )
Let
a(n) denote the number of n-digit numbers which are mutiples of 3 and include at least a '3';
b(n) ................................................................. are not mutiples of 3 and include at least a '3';
c(n) ................................................................. are mutiples of 3 and include no '3';
d(n) ................................................................. are not mutiples of 3 and include no '3';
By considering adding an addtional number at the end of n-digit number to form a (n+1)-digit number,
we can conclude:
a(n+1)=4a(n)+3b(n)+c(n) (numbers in a(n), you can add 0,3,6,9 at the end; numbers in b(n), you can add either 1,4,7 or 2,5,8 at the end; numbers in c(n), you can add a 3)
b(n+1)=6a(n)+7b(n)+d(n) (similar reasoning)
c(n+1)=3c(n)+3d(n) (similar reasoning)
d(n+1)=6c(n)+6d(n) (similar reasoning)

We know a(1)=1, b(1)=0, c(1)=2, d(1)=6
work recursively, we have
a(2)=6, b(2)=12, c(2)=24, d(2)=48
a(3)=84, b(3)=168, c(3)=216, d(3)=432
a(4)=1056, b(4)=2112, c(4)=1944, d(4)=3888
a(5)=12504, b(5)=25008, c(5)=17496, d(5)=34992

So the answer is 12504. The method above works for b(n),c(n),d(n) groups very well, so it is a more 'general' approach.

There is a 'simpler' way, which is by considering the number of 5-digit numbers which include 3 (90000-9*8*8*8*8=37512), and approximately 1/3 of them are divisibly by 3, so the answer is 37512/3=12504 as well, but you need a paragraph to explain why it is exactly 1/3 but not approximately.

Method 2: (provided by davidbin)
Total 5 digits number from 10000~99999: 99999-10000+1 = 90000,
90000/3 = 30000
So in total there are 30000 number multiples of 3 among 5 digits number
Without single digit of 3 could be
1a1a2a3a4
2a1a2a3a4
4a1a2a3a4
5a1a2a3a4
.....
9a1a2a3a4
a1,a2,a3,a4 belong (0,1,2,4,5,6,7,8,9)
0,1,2,4,5,6,7,8,9 mod 3 , the result can be grouped into 3
R0(0,6,9), R1(1,4,7), R2(2,5,8),each group has 3 numbers
1a1a2a3a4 total possiblity is 9X9X9X3= 2187
get a1,a2,a3 from (0,1,2,4,5,6,7,8,9), 9 choices for each number. For every 1, a1,a2,a3 combination, you always have 3 choices for a4 to ensure the number 1a1a2a3a4 can be devided by 3
(1,2,4~9)a1a2a3a4 total possibility = 8x2187=17496
Result = 30000- 17496 = 12504
Below formula valid for 3 & 9
(90000- 8x9x9x9x9)/X x=3 or 9

回复 支持 反对

使用道具 举报

发表于 16-4-2012 09:36:41|来自:印度 | 显示全部楼层
Problem 10.
A goat in a horizontal ground is tied to one end of 14 m long rope. The other end of the rope is attanched to a ring which is free to slide along a fixed 20 m long horizontal rail. Find the maximum possible area that the goat can graze.
Ignore the dimension of the ring and take pi to be 22/7.

The given answer is 1204 square m, but the correct answer should be 1176 square m after discussion.

回复 支持 反对

使用道具 举报

发表于 16-4-2012 09:38:56|来自:印度 | 显示全部楼层
本帖最后由 静雯 于 16-4-2012 09:39 编辑

Problem 11.
A theme part isssues entrance tickets bearing 5-digit serial numbers from 00000 to 99999. If any adjacent numbers in the serial numbers differ by 5 (for example 12493), customers holding such a ticket could use the ticket to reddem a free drink. Find the number of tickets that have serial numbers with this property.
(这个是2011年Asia Pacific Mathematical Olympiad for Primary Schools第一轮竞赛的其中一道试题.)

Solution: (provided by jjrchome )

先求相邻2个不等于5的。
首位可取10个,第2、3、4、5位只能取9个,共10*9*9*9*9。
所以相差5的数有 100000-10*9*9*9*9=34390个

回复 支持 反对

使用道具 举报

发表于 16-4-2012 09:42:15|来自:印度 | 显示全部楼层
Problem 12.
P, Q, R, S and T are equally spaced on a straight rod.      P----Q----R----S----T
If the rod is frist rotated 180 degree about T, then 180 degree about S and finally 180 degree about P, which point's position remains unchanged?

The given answer is R, but the correct answer should be Q.

Solution: (provided by 我要开心)


P Q R S T









T S R Q P




P Q R S T

T S R Q P





Answer is Q.





回复 支持 反对

使用道具 举报

发表于 16-4-2012 09:59:45|来自:印度 | 显示全部楼层
Problem 13                                                                                            16 April
A code is to be formed by using only digits 0 and 1. The length of the code is the number of digits in the code. Find the number of codes of length 10 such that no two 1s can be together(For example, 0101010010).
回复 支持 反对

使用道具 举报

发表于 16-4-2012 15:15:41|来自:印度 | 显示全部楼层
本帖最后由 davidbin 于 18-4-2012 08:35 编辑

Assume code : XX XX XX XX XX
先去除 XX= 11
XX XX XX XX XX    XX = 00, 01,10, 共有3X3X3X3X3 种可能
再去除 01 10
   () XX () XX  ( )   XX  ( )
01 10 可放在其中任何一个()位子 , 共有4X3X3X3 种可能
01 10 XX XX XX
XX 01 10 XX XX
XX XX 01 10 XX
XX XX XX 01 10
其中
01 10 01 10 XX   ( 01 10 XX XX XX and XX XX 01 10 XX 重复计算了3次 01 10 01 10 XX )
01 10 XX 01 10   ( 01 10 XX XX XX and XX XX XX 01 10 重复计算了3次 01 10 XX 01 10 )
XX 01 10 01 10   ( XX 01 10 XX XX and XX XX XX 01 10 重复计算了3次 XX 01 10 01 10 )
各多算了3 次,共9 次
3x3X3X3X3 - (4x3x3x3 -9) = 144
  

点评

答案是对的。但做法有点难理解。  详情 回复 发表于 17-4-2012 20:01
回复 支持 反对

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 注册会员 新浪微博登陆

本版积分规则

联系客服 关注微信 下载APP 小程序 返回顶部 返回列表